Cylometallated semicarbazone complexes of palladium(II). Crystal and molecular structure of
 $\left[\left\{\mathrm{Pd}\left[\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{C}(\mathrm{Et})=\mathrm{NN}(\mathrm{H}) \mathrm{C}(=\mathrm{O}) \mathrm{NH}_{2}\right]\right\}_{2}\left(\mu-\mathrm{Ph}_{2} \mathrm{P}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{PPh}_{2}\right)\right]\left[\mathrm{ClO}_{4}\right]_{2}$

José M. Vila ${ }^{\text {a,* }}$, Teresa Pereira ${ }^{\text {a }}$, Juan M. Ortigueira ${ }^{\text {a }}$, Margarita López Torres ${ }^{\text {a }}$, Alfonso Castiñeiras ${ }^{\text {a }}$, D. Lata ${ }^{\text {a }}$, Jesús J. Fernández ${ }^{\text {b }}$, Alberto Fernández ${ }^{\text {b }}$
${ }^{\text {a }}$ Departamento de Quimica Inorgánica, Universidad de Santiago de Compostela, 15706 Santiago de Compostela, Spain
${ }^{\text {b }}$ Departamento de Química Fundamental e Industrial, Universidad de La Coruña, 15071 La Coruña, Spain

Received 5 August 1997

Abstract

Treatment of the semicarbazones $4-\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{C}(\mathrm{Me})=\mathrm{NN}(\mathrm{H}) \mathrm{C}(=\mathrm{O}) \mathrm{NH}_{2} \quad$ a, $\quad 3,4-\mathrm{Me}_{2} \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{C}(\mathrm{Me})=\mathrm{NN}(\mathrm{H}) \mathrm{C}(=\mathrm{O}) \mathrm{NH}_{2}$ b and $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C}(\mathrm{Et})=\mathrm{NN}(\mathrm{H}) \mathrm{C}(=\mathrm{O}) \mathrm{NH}_{2}$ c, gave the $[\mathrm{C}, \mathrm{N}, \mathrm{O}]$ cyclometallated compounds $\left[\mathrm{Pd}\left\{4-\mathrm{MeC}_{6} \mathrm{H}_{3} \mathrm{C}(\mathrm{Me})=\mathrm{NN}(\mathrm{H}) \mathrm{C}(=\mathrm{O}) \mathrm{NH}_{2}\right\}(\mathrm{Cl})\right]$ 1a, $\left[\mathrm{Pd}\left\{3,4-\mathrm{Me}_{2} \mathrm{C}_{6} \mathrm{H}_{2} \mathrm{C}(\mathrm{Me})=\mathrm{NN}(\mathrm{H}) \mathrm{C}(=\mathrm{O}) \mathrm{NH}_{2}\right\}(\mathrm{Cl})\right] \mathbf{1 b}$ and $\left[\mathrm{Pd}\left\{\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{C}(\mathrm{Et})=\mathrm{NN}(\mathrm{H}) \mathrm{C}(=\mathrm{O}) \mathrm{NH}_{2}\right\}(\mathrm{Cl})\right] \mathbf{1 c}$, after $\mathrm{C}-\mathrm{H}$ activation. Treatment of compounds $\mathbf{1 a}, \mathbf{1 b}$, and $\mathbf{1 c}$ with silver perchlorate followed by treatment with tertiary diphosphine ligands gave the dinuclear $[\mathrm{C}, \mathrm{N}, \mathrm{O}] \quad$ cyclometallated compounds $\quad\left[\left\{\mathrm{Pd}\left[4-\mathrm{MeC}_{6} \mathrm{H}_{3} \mathrm{C}(\mathrm{Me})=\mathrm{NN}(\mathrm{H}) \mathrm{C}(=\mathrm{O}) \mathrm{NH}_{2}\right]_{2}(\mu-\mathrm{L})\right]\left[\mathrm{ClO}_{4}\right]_{2} \quad \mathbf{2 a}-\mathbf{7 a}, \quad[\{\mathrm{Pd}[3,4-\right.$ $\left.\left.\mathrm{Me}_{2} \mathrm{C}_{6} \mathrm{H}_{2} \mathrm{C}(\mathrm{Me})=\mathrm{NN}(\mathrm{H}) \mathrm{C}(=\mathrm{O}) \mathrm{NH}_{2}\right]_{2}(\mu-\mathrm{L})\right]\left[\mathrm{ClO}_{4}\right]_{2} \quad \mathbf{2 b}-\mathbf{7 b}, \quad\left[\left\{\mathrm{Pd}\left[\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{C}(\mathrm{Et})=\mathrm{NN}(\mathrm{H}) \mathrm{C}(=\mathrm{O}) \mathrm{NH}_{2}\right]\right\}_{2}(\mu-\mathrm{L})\right]\left[\mathrm{ClO}_{4}\right]_{2} \quad \mathbf{2 c}-\mathbf{7 c}, \quad[\mathrm{L}=$ $\mathrm{Ph}_{2} \mathrm{PC}\left(=\mathrm{CH}_{2}\right) \mathrm{PPh}_{2}(\mathrm{vdpp})$ and $\left.\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{PPh}_{2}(\mathrm{dppm})\right]$ as $1: 2$ electrolytes. Reaction of 1a and $\mathbf{1 c}$ with diphosphines gave the dinuclear $[\mathrm{C}, \mathrm{N}] \quad$ cyclometallated compounds $\quad\left[\left\{\mathrm{Pd}\left[4-\mathrm{MeC}_{6} \mathrm{H}_{3} \mathrm{C}(\mathrm{Me})=\mathrm{NN}(\mathrm{H}) \mathrm{C}(=\mathrm{O}) \mathrm{NH}_{2}\right](\mathrm{Cl})\right\}_{2}(\mu-\mathrm{L})\right] \quad$ 8a, 9a, $\left[\left\{\mathrm{Pd}\left[\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{C}(\mathrm{Et})=\mathrm{NN}-(\mathrm{H}) \mathrm{C}(=\mathrm{O}) \mathrm{NH}_{2}\right](\mathrm{Cl})\right\}_{2}(\mu-\mathrm{L})\right] \mathbf{8 c}, \mathbf{9 c},\left[\mathrm{L}=\mathrm{Ph}_{2} \mathrm{P}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{PPh}_{2}(\mathrm{dppp})\right.$ and $\mathrm{Ph}_{2} \mathrm{P}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{PPh}_{2}$ (dppb)]. The complexes were characterised by their elemental analysis (C,H,N) and by IR and ${ }^{31} P\left\{{ }^{1} H\right\}$ and ${ }^{1} \mathrm{H}-\mathrm{NMR}$ data, and $\left[\left\{\mathrm{Pd}\left[\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{C}(\mathrm{Et})=\mathrm{NN}(\mathrm{H}) \mathrm{C}(=\mathrm{O}) \mathrm{NH}_{2}\right]\right\}_{2}\left(\mu-\mathrm{Ph}_{2} \mathrm{P}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{PPh}_{2}\right)\right]\left[\mathrm{ClO}_{4}\right]_{2}$ (3c) was characterised crystallographically. © 1998 Elsevier Science S.A. All rights reserved.

Keywords: Cyclometallated; Semicarbazone; Palladium

1. Introduction

Since the first cyclometallated complex was described cyclometallation has become very important in organomeAtallic chemistry $[1-5]$ and in associated areas such as in regioespecific organic and organometallic reactions [6], in insertion reactions [7], in the synthesis of new metal mesogenic compounds [8], and in catalytic materials [9]. Nitrogen-donor ligands are known to undergo facile metallation with formation of the classical five-membered metallacycle. Recently we have be-

[^0]come interested in the synthesis and reactivity of palladium and platinum cyclometallated compounds with potentially terdentate $[\mathrm{C}, \mathrm{N}, \mathrm{N}]$ ligands and we have described some chemistry of these ligands related to their reactivity with tertiary phosphines and diphosphines [10] J.M. Vila, M. Gayoso, M.T. Pereira, M. López Torres, J.J. Fernández, A. Fernández, and J.M. Ortigueira (Unpublished results). It is our purpose to extend our research to the related terdentate $[\mathrm{C}, \mathrm{N}, \mathrm{O}$] systems, in particular semicarbazones, which should produce cyclometallated complexes in which the ligand is bonded through carbon, nitrogen and oxygen, giving compounds with two fused rings; examples of other
terdentate $[\mathrm{C}, \mathrm{N}, \mathrm{O}]$ systems have been reported [11-13]. In the present paper we report the synthesis and reactivity of new semicarbazone cyclometallated compounds with bonds at palladium to the aryl carbon, imine nitrogen and oxygen atoms. We considered that removal of the chlorine at palladium by treatment with silver perchlorate, should render a vacant coordination site which could be occupied by the phosphine giving compounds with the two fused rings intact, whereas treatment with the phosphine in the absence of the silver salt should give ring openning reactions, and this is what we have done. In either case novel dinuclear complexes may be obtained with the diphosphines $\mathrm{Ph}_{2} \mathrm{P}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{PPh}_{2} \quad(\mathrm{dppb}), \quad \mathrm{Ph}_{2} \mathrm{P}_{\left(\mathrm{CH}_{2}\right)_{3}} \mathrm{PPh}_{2} \quad$ (dppp), $\mathrm{Ph}_{2} \mathrm{P}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{PPh}_{2}$ (dppe), trans $-\mathrm{Ph}_{2} \mathrm{PCH}=\mathrm{CHPPh}_{2}$ (trans-dppe), $\quad \mathrm{Ph}_{2} \mathrm{PC}\left(=\mathrm{CH}_{2}\right) \mathrm{PPh}_{2} \quad$ (vdpp) and $\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{PPh}_{2}$ (dppm) bridging the two palladium centres. The X-ray crystal structure of one of these compounds is reported.

2. Results and discussion

2.1. Reactions of the ligands

The compounds described in this paper were characterised by elemental analysis and by IR spectroscopy (data in Section 3) and by ${ }^{1} \mathrm{H}$ and ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ (Table 1) and ${ }^{13} \mathrm{C}$-NMR spectroscopy (for the free ligands and $\mathbf{1 a}, \mathbf{1 b}$ and $\mathbf{1 c}$ only; Section 3). Treatment of the semicarbazone ligands a, b or c with $\mathrm{Li}_{2}\left[\mathrm{PdCl}_{4}\right]$ in methanol gave compounds $\left[\mathrm{Pd}\left\{4-\mathrm{MeC}_{6} \mathrm{H}_{3} \mathrm{C}(\mathrm{Me})=\mathrm{NN}(\mathrm{H}) \mathrm{C}\right.\right.$ $\left.\left.(=\mathrm{O}) \mathrm{NH}_{2}\right\}(\mathrm{Cl})\right] \mathbf{1 a},\left[\operatorname{Pd}\left\{3,4-\mathrm{Me}_{2} \mathrm{C}_{6} \mathrm{H}_{2} \mathrm{C}(\mathrm{Me})=\mathrm{NN}(\mathrm{H}) \mathrm{C}-\right.\right.$ $\left.\left.(=\mathrm{O}) \mathrm{NH}_{2}\right\}(\mathrm{Cl})\right]$ 1b and $\left[\mathrm{Pd}\left\{\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{C}(\mathrm{Et})=\mathrm{NN}-(\mathrm{H}) \mathrm{C}-\right.\right.$ $\left.\left.(=\mathrm{O}) \mathrm{NH}_{2}\right\}(\mathrm{Cl})\right]$ 1c, respectively (Scheme 1). The metallated organic moiety is bonded to the palladium atom in each case through the aryl C6 carbon atom, the imine nitrogen atom, and the oxygen atom. The lower frequency shift of the $v(\mathrm{C}=\mathrm{O})$ band is in accordance with coordination of the amide oxygen to the metal center ([14]a,b). The $v(\mathrm{PdCl})$ values confirm the trans geometry of the chlorine atom with respect to the imine nitrogen. The compounds were sufficiently soluble in DMSO- d_{6}, although some signals were broad in the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra. Nevertheless, the NH resonance could be correctly assigned, and it is shifted to lower field in agreement with coordination of the $\mathrm{C}(=\mathrm{O}) \mathrm{NH}$ group to palladium [13]. This shift is not observed in compounds where the $\mathrm{Pd}-\mathrm{O}$ bond has been cleaved (vide infra). The $\mathrm{C}=\mathrm{O}, \mathrm{C}=\mathrm{N}, \mathrm{C} 1$ and C 6 resonances in the ${ }^{13} \mathrm{C}$-NMR spectra are downfield shifted from those of the parent free ligands, confirming metallation and $\mathrm{Pd}-\mathrm{N}$ coordination had taken place [15].

Treatment of compounds $\mathbf{1 a}, \mathbf{1 b}$ and $\mathbf{1 c}$ with silver perchlorate followed by the appropriate tertiary diphosphine in a $2: 1$ molar ratio gave the dinuclear com-
pounds $\quad\left[\left\{\mathrm{Pd}\left[4-\mathrm{MeC}_{6} \mathrm{H}_{3} \mathrm{C}(\mathrm{Me})=\mathrm{NN}(\mathrm{H}) \mathrm{C}(=\mathrm{O}) \mathrm{NH}_{2}\right]\right\}_{2}-\right.$ $(\mu-\mathrm{L})]\left[\mathrm{ClO}_{4}\right]_{2} \quad \mathbf{2 a - 7 a}, \quad\left[\left\{\mathrm{Pd}\left[3,4-\mathrm{Me}_{2} \mathrm{C}_{6} \mathrm{H}_{2} \mathrm{C}-(\mathrm{Me})=\right.\right.\right.$ $\left.\left.\mathrm{NN}(\mathrm{H}) \mathrm{C}(=\mathrm{O}) \mathrm{NH}_{2}\right]_{2}(\mu-\mathrm{L})\right]\left[\mathrm{ClO}_{4}\right]_{2} \mathbf{2 b}-7 \mathbf{b},\left[\left\{\mathrm{Pd}\left[\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{C}-\right.\right.\right.$ $\left.\left.(\mathrm{Et})=\mathrm{NN}(\mathrm{H}) \mathrm{C}(=\mathrm{O}) \mathrm{NH}_{2}\right]_{2}(\mu-\mathrm{L})\right]\left[\mathrm{ClO}_{4}\right]_{2} \quad 2 \mathbf{c}-7 \mathbf{c}, \quad[\mathrm{~L}=$ $\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{PPh}_{2} \quad$ (dppm), $\quad \mathrm{Ph}_{2} \mathrm{P}^{2}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{PPh}_{2} \quad$ (dppe), $\mathrm{Ph}_{2} \mathrm{P}_{\left.\left(\mathrm{CH}_{2}\right)_{3} \mathrm{PPh}_{2} \text { (dppp) and } \mathrm{Ph}_{2} \mathrm{P}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{PPh}_{2} \text { (dppb) }\right) ~\left(\mathrm{P}^{2}\right.}$ $\mathrm{Ph}_{2} \mathrm{PC}\left(\left(\mathrm{CH}_{2}\right) \mathrm{PPh}_{2}\right.$ (vdpp) and trans $-\mathrm{Ph}_{2} \mathrm{PCH}=\mathrm{CHPPh}_{2}$ (trans-dppe)], in which the diphosphine ligand bridges two metal centers which are in turn bonded to a terdentate semicarbazone [$\mathrm{C}, \mathrm{N}, \mathrm{O}$] system. The compounds were pure air-stable solids, which were fully characterised (see Section 3 and Table 1); they are soluble in the more common organic solvents. They are 1:2 electrolytes as was shown by molar conductivity measurements in dry acetonitrile. The chlorine atom has been quantitatively removed as silver chloride, as is confirmed by the absence of the $v(\mathrm{PdCl})$ band in the IR spectra, to yield compounds with the metal center bonded to four different atoms in a square-planar environment. The H5 resonance shows a high-field shift and coupling to the ${ }^{31} \mathrm{P}$ atom (see Table 1); for compounds with dppe, dppp and dppb, this signal is a doublet or a doublet of doublets, as is the case; whereas in compounds with dppm, vdpp, and trans-dppe, the resonance appears as a multiplet. The ${ }^{1} \mathrm{H}\left\{{ }^{31} \mathrm{P}\right\}$ spectra brings the H 5 resonance to a singlet in the \mathbf{a} and \mathbf{b} complexes, and to a doublet of doublets in the \mathbf{c} complexes.

Treatment of compunds $\mathbf{1 a}, \mathbf{1 b}$ and $\mathbf{1 c}$ with the appropriate tertiary diphosphine in a $2: 1$ molar ratio gave the dinuclear compounds [\{Pd[4$\left.\left.\left.\mathrm{MeC}_{6} \mathrm{H}_{3} \mathrm{C}(\mathrm{Me})=\mathrm{NN}(\mathrm{H}) \mathrm{C}(=\mathrm{O}) \mathrm{NH}_{2}\right](\mathrm{Cl})\right\}_{2}(\mu-\mathrm{L})\right]$ 8a, 9a, $\left[\left\{\mathrm{Pd}\left[\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{C}(\mathrm{Me})=\mathrm{NN}-(\mathrm{H}) \mathrm{C}(=\mathrm{O}) \mathrm{NH}_{2}\right](\mathrm{Cl})\right\}_{2}(\mu-\mathrm{L})\right] \quad \mathbf{8 c}$, 9c, $\quad\left[\mathbf{8 a}, 8 \mathbf{8 c}: \mathrm{L}=\mathrm{Ph}_{2} \mathrm{P}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{PPh}_{2}\right.$ (dppp); 9a: $\mathrm{L}=$ $\mathrm{Ph}_{2} \mathrm{P}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{PPh}_{2} \quad$ (dppe); 9c: $\quad \mathrm{L}=\mathrm{Ph}_{2} \mathrm{P}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{PPh}_{2}$ (dppp)], in which the diphosphine ligand bridges two metal centers which are bonded to a bidentate semicarbazone [C,N] system. The compounds were air-stable solids, which were fully characterised (see Section 3 and Table 1); compounds 8a and 9a were too insoluble for their NMR determination. The low values of the molar conductivity measurements in dry acetonitrile, precludes their formulation as electrolyte species. The $v(\mathrm{C}=\mathrm{O})$ stretch clearly shows there is no $\mathrm{Pd}-\mathrm{O}$ bond in the complexes; as proof, in $8 \mathbf{c}$ and 9 c the NH resonance is not low field shifted with respect to the free ligand (vide supra). The shift of the $v(\mathrm{Pd}-\mathrm{Cl})$ stretch towards lower wavenumbers suggests the chlorine atom is trans to the higher trans influence aryl carbon atom. Also noticable is the higher value of ${ }^{4} J[\mathrm{PH}(5)]$ in the ${ }^{1} \mathrm{H}$ NMR spectra of $8 \mathbf{c}$ and $\mathbf{9 c}$ as compared to the analogous electrolyte compounds, 2c and 3c.
Reaction of compounds 8a, 8c, 9a, 9c with silver perchlorate gave removal of the chlorine ligand and rearrangement of the compounds to yield complexes 2a, $\mathbf{2 c}, \mathbf{4 a}, 3 \mathbf{c}$, respectively, with the palladium atom bonded to a terdentate [C,N,O] system.

Table 1
${ }^{31} \mathrm{P}^{\mathrm{a}}$ and ${ }^{1} \mathrm{H}^{\mathrm{b}}-\mathrm{NMR}$ data ${ }^{\mathrm{c}, \mathrm{d}}$

Compound 31P		Aromatic	Others
$\mathbf{a}^{\text {e }}$		$7.59\left[\mathrm{~d}, 2 \mathrm{H}, \mathrm{H}^{2}, \mathrm{H}^{6}, 8.3^{\mathrm{f}}\right]$	9.32[s, 1H, NH]
		$7.19\left[\mathrm{~d}, 2 \mathrm{H}, \mathrm{H}^{3}, \mathrm{H}^{5}, 8.3^{\mathrm{f}}\right]$	$6.48\left[\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH}_{2}\right]$
			$2.38[\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}]$
			$2.22[\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}]$
$1 \mathrm{a}^{\text {e }}$		7.15-6.84 m	$10.2[\mathrm{br}, 1 \mathrm{H}, \mathrm{NH}]$
			$2.21[\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}]$
			$2.18[\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}]$
2a	32.1 s	7.12[d, 1H, $\left.\mathrm{H}^{2}, 7.6^{\mathrm{f}}\right]$	$10.8[\mathrm{br}, 1 \mathrm{H}, \mathrm{NH}]$
		$6.84\left[\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}^{3}, 7.6^{\text {f }}\right]$	$7.0\left[\mathrm{br}, 2 \mathrm{H}, \mathrm{NH}_{2}\right]$
		$6.08\left[\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}^{5}, 4.1^{2}\right]$	$2.35[\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}]$
			$1.85\left[\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}^{\mathrm{h}}\right]$
3a	32.1 s	$7.12\left[\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}^{2}, 7.8^{\text {f }}\right]$	$10.8[\mathrm{br}, 1 \mathrm{H}, \mathrm{NH}]$
		$6.82\left[\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}^{3}, 7.8{ }^{\text {f }}\right]$	$7.0\left[\mathrm{br}, 2 \mathrm{H}, \mathrm{NH}_{2}\right]$
		$6.05\left[\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}^{5}, 5.0^{9}\right]$	$2.36[\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}]$
			$1.80\left[\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}^{\mathrm{h}}\right]$
4a	32.9 s	$7.01\left[\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}^{2}, 7.7^{\mathrm{f}}\right]$	$10.13\left[\mathrm{~d}, 1 \mathrm{H}, \mathrm{NH}, 4.0^{\mathrm{i}}\right]$
		$6.80\left[\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}^{3}, 7.7^{\mathrm{f}}\right]$	$7.0\left[\mathrm{br}, 2 \mathrm{H}, \mathrm{NH}_{2}\right]$
		$5.57\left[\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}^{5}, 4.0^{8}\right]$	$1.76\left[\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}^{\mathrm{h}}\right]$
5a	32.8 s	$7.12\left[\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}^{2}, 8.0^{\text {f }}\right]$	
		$6.85\left[\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}^{3}, 8.0^{\circ}\right]$	$6.9\left[\mathrm{br}, 2 \mathrm{H}, \mathrm{NH}_{2}\right]$
		$6.08\left[\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}^{5}\right]$	
			$1.79\left[\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}^{\mathrm{h}}\right]$
6a ${ }^{\text {k }}$	41.8 s	$7.05\left[\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}^{2}, 7.6^{\mathrm{f}}\right]$	$10.6[\mathrm{br}, 1 \mathrm{H}, \mathrm{NH}]$
		$6.81\left[\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}^{3}, 7.6^{\text {f }}\right]$	$6.8\left[\mathrm{br}, 2 \mathrm{H}, \mathrm{NH}_{2}\right]$
		$5.95\left[\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}^{5}\right]$	$2.34[\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}]$
			$1.78\left[\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}^{\mathrm{h}}\right]$
$7 \mathbf{a}^{1}$	27.0s	$6.86\left[\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}^{2}, 7.7^{\text {f }}\right]$	$10.8[\mathrm{br}, 1 \mathrm{H}, \mathrm{NH}]$
		$6.52\left[\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}^{3}, 7.7^{\text {f }}\right]$	$2.37[\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}]$
		$5.97\left[\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}^{5}\right]$	$1.60\left[\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}^{\mathrm{h}}\right]$
b^{1}		$7.45\left[\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}^{2}\right]$	$9.25[\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}]$
		$7.40\left[\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}^{6}, 7.7^{\text {f }}\right]$	$6.47\left[\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH}_{2}\right]$
		$7.14\left[\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}^{5}, 7.7^{\mathrm{f}}\right]$	$2.30[\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}]$
			$2.29[\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}]$
			$2.19[\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}]$
$1 \mathrm{~b}^{\text {e }}$		7.1-6.8m	$10.1[\mathrm{br}, 1 \mathrm{H}, \mathrm{NH}]$
			$2.17[\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}]$
			$2.19[\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}]$
2b	28.5 s		$10.5[\mathrm{br}, 1 \mathrm{H}, \mathrm{NH}]$
		$5.83\left[\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}^{5}, 5.1^{\mathrm{f}}\right]$	$6.8\left[\mathrm{br}, 2 \mathrm{H}, \mathrm{NH}_{2}\right]$
			$2.35[\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}]$
			2.08[s, 3H, Me]
			$1.77\left[\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}^{\mathrm{h}}\right.$]
3b	32.2 s	$7.05\left[\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}^{2}\right]$	$10.7[\mathrm{br}, 1 \mathrm{H}, \mathrm{NH}]$
		$5.98\left[\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}^{5}, 5.0^{\mathrm{f}}\right]$	$6.4\left[\mathrm{br}, 2 \mathrm{H}, \mathrm{NH}_{2}\right]$
			2.37[s, 3H, Me]
			$1.74\left[\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}^{\mathrm{h}}\right]$
4b	32.5 s	$6.89\left[\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}^{2}\right]$	$10.14\left[\mathrm{~d}, 1 \mathrm{H}, \mathrm{NH}, 4.2^{\text {i }}\right]$
		$5.49\left[\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}^{5}, 5.3^{\text {f }}\right]$	$6.9\left[\mathrm{br}, 2 \mathrm{H}, \mathrm{NH}_{2}\right]$
			$1.69\left[\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}^{\mathrm{h}}\right]$
5b	36.7 s	7.07[s, $\left.1 \mathrm{H}, \mathrm{H}^{2}\right]$	$10.8[\mathrm{br}, 1 \mathrm{H}, \mathrm{NH}]$
		$6.03\left[\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}^{5}\right]$	$6.9\left[\mathrm{br}, 2 \mathrm{H}, \mathrm{NH}_{2}\right]$
			$2.41[\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}]$
			$2.12[\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}]$
			$1.72\left[\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}^{\mathrm{h}}\right]$
6b	42.2 s	6.97[s, $\left.1 \mathrm{H}, \mathrm{H}^{2}\right]$	$10.5[\mathrm{~m}, 1 \mathrm{H}, \mathrm{NH}]$
		$5.97\left[\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}^{5}\right]$	$6.6\left[\mathrm{br}, 2 \mathrm{H}, \mathrm{NH}_{2}\right]$
			$2.31[\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}$]
			$2.13[\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}$]
			$1.63\left[\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}^{\mathrm{h}}\right]$
$7{ }^{1}$	27.2s	$6.75\left[\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}^{2}\right]$	$10.8[\mathrm{br}, 1 \mathrm{H}, \mathrm{NH}]$
		$5.87\left[\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}^{5}\right]$	$7.1\left[\mathrm{br}, 2 \mathrm{H}, \mathrm{NH}_{2}\right]$
			$2.35[\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}]$

Table 1 (continued)

Compound 31P		Aromatic	Others
$c^{\text {e }}$		$\begin{aligned} & 7.82\left[\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}^{2}, 7.8^{\mathrm{f}}, 1.4^{\mathrm{m}}\right] \\ & 7.36\left[\mathrm{~m}, \mathrm{H}^{3}, \mathrm{H}^{4}, \mathrm{H}^{5}, \mathrm{H}^{6}\right] \end{aligned}$	$\begin{aligned} & 1.95[\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}] \\ & 1.49\left[\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}^{\mathrm{h}}\right] \\ & 9.64[\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}] \\ & 6.57\left[\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH}_{2}\right] \\ & 2.72\left[\mathrm{q}, 2 \mathrm{H}, \mathrm{Et}, 7.8^{\mathrm{f}}\right] \\ & 1.19\left[\mathrm{t}, 3 \mathrm{H}, \mathrm{Et}, 7.8^{\mathrm{f}}\right] \end{aligned}$
$1 c^{\text {e }}$		7.3-6.9m	$10.6[\mathrm{br}, 1 \mathrm{H}, \mathrm{NH}]$ $2.63\left[\mathrm{q}, 2 \mathrm{H}, \mathrm{Et}, 7.5^{\mathrm{f}}\right]$ $1.11\left[t, 3 \mathrm{H}, \mathrm{Et}, 7.5^{f}\right]$
2c	33.1s	$\begin{aligned} & 7.26\left[\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}^{2}, 7.6^{\mathrm{f}}, 1.3^{\mathrm{m}}\right] \\ & 7.03\left[\mathrm{t}, 2 \mathrm{H}, \mathrm{H}^{3}, 7.6^{\mathrm{f}}\right] \\ & 6.71\left[\mathrm{dt}, 1 \mathrm{H}, \mathrm{H}^{4}, 7.6^{\mathrm{f}}, 1.3^{\mathrm{m}}\right] \\ & 6.38\left[\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}^{5}, 7.8^{\mathrm{f}}, 5.2^{\mathrm{g}}\right] \end{aligned}$	$\begin{aligned} & 11.1\left[\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}^{2}\right] \\ & 7.1\left[\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH}_{2}\right] \\ & 2.84\left[\mathrm{q}, 2 \mathrm{H}, \mathrm{Et}, 7 . .^{\mathrm{f}}\right] \\ & 1.25\left[\mathrm{t}, 3 \mathrm{H}, \mathrm{Et}, 7.6^{\mathrm{f}}\right] \end{aligned}$
3 c	26.7s	$\begin{aligned} & 7.30\left[\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}^{2}, 7.6^{\mathrm{f}}, 1.4^{\mathrm{m}}\right] \\ & 7.05\left[\mathrm{t}, 1 \mathrm{H}, \mathrm{H}^{3}, 7.6^{\mathrm{f}}\right] \\ & 6.73\left[\mathrm{dt}, 1 \mathrm{H}, \mathrm{H}^{4}, 7.6^{\mathrm{f}}, 1.4^{\mathrm{m}}\right] \\ & 6.39\left[\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}^{5}, 7.8^{\mathrm{f}}, 5.4^{\mathrm{g}}\right] \end{aligned}$	$\begin{aligned} & 10.91\left[\mathrm{~d}, 1 \mathrm{H}, \mathrm{NH}_{2}, 4.2^{\mathrm{i}}\right] \\ & 7.1\left[\mathrm{br}, 2 \mathrm{H}, \mathrm{NH}_{2}\right] \\ & 1.25\left[\mathrm{t}, 3 \mathrm{H}, \mathrm{Et}, 7.6^{\mathrm{f}}\right] \end{aligned}$
4c	30.6s	$\begin{aligned} & 7.20\left[\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}^{2}, 7.6^{\mathrm{f}}, 1.4^{\mathrm{m}}\right] \\ & 7.02\left[\mathrm{t}, 1 \mathrm{H}, \mathrm{H}^{3}, 7.6^{\mathrm{f}}\right] \\ & 6.62\left[\mathrm{dt}, 1 \mathrm{H}, \mathrm{H}^{4}, 7.6^{\mathrm{f}}, 1.4^{\mathrm{m}}\right] \\ & 6.13\left[\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}^{5}, 7.6^{\mathrm{f}}, 5.8^{\mathrm{g}}\right] \end{aligned}$	$\begin{aligned} & 10.7[\mathrm{br}, 1 \mathrm{H}, \mathrm{NH}] \\ & 7.0\left[\mathrm{br}, 2 \mathrm{H}, \mathrm{NH}_{2}\right] \\ & 2.68\left[\mathrm{q}, 2 \mathrm{H}, \mathrm{Et}, 7.5^{\mathrm{f}}\right] \\ & 1.20\left[\mathrm{t}, 3 \mathrm{H}, \mathrm{Et}, 7.5^{\mathrm{f}}\right] \end{aligned}$
5c	31.8s	$\begin{aligned} & 7.31\left[\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}^{2}, 7.6^{\mathrm{f}}, 1.4^{\mathrm{m}}\right] \\ & 7.05\left[\mathrm{t}, 1 \mathrm{H}, \mathrm{H}^{3}, 7.6^{\mathrm{f}}\right] \\ & 6.64\left[\mathrm{dt}, 1 \mathrm{H}, \mathrm{H}^{4}, 7.6^{\mathrm{f}}, 1.4^{\mathrm{m}}\right] \\ & 6.35\left[\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}^{5}, 7.6^{\mathrm{f}}\right] \end{aligned}$	$10.9[\mathrm{br}, 1 \mathrm{H}, \mathrm{NH}]$ $7.0\left[\mathrm{br}, 2 \mathrm{H}, \mathrm{NH}_{2}\right]$ $1.20\left[t, 3 \mathrm{H}, \mathrm{Et}, 7.6^{\mathrm{f}}\right]$
$6 \mathrm{c}^{\mathrm{j}, \mathrm{k}}$	30.95s	$\begin{aligned} & 7.0-6.9\left[\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}^{2}, \mathrm{H}^{3}\right] \\ & 6.46\left[\mathrm{dt}, 1 \mathrm{H}, \mathrm{H}^{4}, 7.6^{\mathrm{f}}, 1.7^{\mathrm{m}}\right] \\ & 5.95\left[\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}^{\mathrm{s}}, 7.6^{\mathrm{f}}\right] \end{aligned}$	$\begin{aligned} & 10.4[\mathrm{br}, 1 \mathrm{H}, \mathrm{NH}] \\ & 5.2\left[\mathrm{br}, 2 \mathrm{H}, \mathrm{NH}_{2}\right] \\ & 2.63\left[\mathrm{q}, 2 \mathrm{H}, \mathrm{Et}, 7.6^{\mathrm{f}}\right] \\ & 1.22\left[\mathrm{t}, 3 \mathrm{H}, \mathrm{Et}, 7.6^{\mathrm{f}}\right] \end{aligned}$
$7{ }^{1}$	21.1s	$\begin{aligned} & 6.95\left[\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}^{2}, 7.6^{\mathrm{f}}\right] \\ & 6.67\left[\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}^{3}, \mathrm{H}^{4}\right] \\ & 6.2\left[\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}^{5}\right] \end{aligned}$	$\begin{aligned} & 11.0[\mathrm{br}, 1 \mathrm{H}, \mathrm{NH}] \\ & 2.79\left[\mathrm{q}, 2 \mathrm{H}, \mathrm{Et}, 7.6^{\mathrm{f}}\right] \\ & 1.25\left[\mathrm{t}, 3 \mathrm{H}, \mathrm{Et}, 7.6^{\mathrm{f}}\right] \end{aligned}$
$8 c^{\text {e }}$	37.2s	$\begin{aligned} & 7.36\left[\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}^{2}, 7.3^{\mathrm{f}}\right] \\ & 6.94\left[\mathrm{t}, 1 \mathrm{H}, \mathrm{H}^{3}, 7.3^{\mathrm{f}}\right] \\ & 6.56\left[\mathrm{t}, 1 \mathrm{H}, \mathrm{H}^{4}, 7.3^{\mathrm{f}}\right] \\ & 6.30\left[\mathrm{t}, 1 \mathrm{H}, \mathrm{H}^{5}, 7.3^{\mathrm{f}}, 7.3^{8}\right] \end{aligned}$	$\begin{aligned} & 9.2[\mathrm{br}, 1 \mathrm{H}, \mathrm{NH}] \\ & 6.76\left[\mathrm{br}, 2 \mathrm{H}, \mathrm{NH}_{2}\right] \\ & 2.68\left[\mathrm{q}, 2 \mathrm{H}, \mathrm{Et}, 7.5^{\mathrm{f}}\right] \\ & 1.50\left[\mathrm{t}, 3 \mathrm{H}, \mathrm{Et}, 7.5^{\mathrm{f}}\right] \end{aligned}$
$9 c^{\text {e }}$	34.9s	$\begin{aligned} & 7.35\left[\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}^{2}, 7.3^{\mathrm{f}}\right] \\ & 6.95\left[\mathrm{t}, 1 \mathrm{H}, \mathrm{H}^{3}, 7.3^{\mathrm{f}}\right] \\ & 6.57\left[\mathrm{t}, 1 \mathrm{H}, \mathrm{H}^{4}, 7.3^{\mathrm{f}}\right] \\ & 6.27\left[\mathrm{t}, 1 \mathrm{H}, \mathrm{H}^{5}, 7.3^{\mathrm{f}}, 7.3^{\mathrm{g}}\right] \end{aligned}$	$\begin{aligned} & 9.3[\mathrm{br}, 1 \mathrm{H}, \mathrm{NH}] \\ & 6.89\left[\mathrm{br}, 2 \mathrm{H}, \mathrm{NH}_{2}\right] \\ & 2.65\left[\mathrm{q}, 2 \mathrm{H}, \mathrm{Et}, 7.5^{\mathrm{f}}\right] \\ & 1.55\left[\mathrm{t}, 3 \mathrm{H}, \mathrm{Et}, 7.5^{\mathrm{f}}\right] \end{aligned}$

${ }^{\mathrm{a}}$ In $\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}$ unless otherwise stated. Measured at $100.6 \mathrm{MHz}\left(\mathrm{ca} .20^{\circ} \mathrm{C}\right)$; chemical shifts (δ) in ppm (± 0.1) to high frequency of $85 \% \mathrm{H}_{3} \mathrm{PO}_{4}$.
${ }^{\mathrm{b}}$ In $\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}$ unless otherwise stated. Measured at 250 or 300 MHz ; chemical shifts (δ) in ppm $\left((0.01)\right.$ to high frequency of SiMe_{4}.
${ }^{\text {c }}$ Coupling constants in Hz .
${ }^{\mathrm{d}} \mathrm{s}$, singlet; d , doublet; dd, doublet of doublets; t , triplet; dt doublet of triplets; q , quadruplet; m, multiplet; br, broad.
${ }^{\mathrm{e}}$ In DMSO- d_{6}.
$f^{3} J(\mathrm{HH})$.
${ }^{4}{ }^{4} J$ (PH5).
${ }^{\mathrm{h}} \mathrm{C}(3)-\mathrm{Me}$.
${ }^{\mathrm{i}}{ }^{4} J(\mathrm{PH})$.
${ }^{\mathrm{j}}$ In CDCl_{3}.
${ }^{\mathrm{k}} \delta\left(\left[\mathrm{PC}\left(=\mathrm{CH}_{2}\right) \mathrm{P}\right]:(6 a), 7.18, N=43\right.$; (6c), $7.16, N=46$.
${ }^{1}\left[\left(\mathrm{PCH}_{2} \mathrm{P}\right)\right]:(7 \mathbf{a}), 4.42 \mathrm{~m}$; (7b), 4.2 m ; (7c), 4.46 m .
${ }^{m} 4 J(H H)$.

2.2. Crystal structure of $\left[\left\{P d\left[C_{6} H_{4} C(E t)=N N(H) C\right.\right.\right.$ -

$\left.\left.\left.(=\mathrm{O}) \mathrm{NH}_{2}\right]_{2}\left(\mu-\mathrm{Ph}_{2} \mathrm{P}-\left(\mathrm{CH}_{2}\right)_{3} \mathrm{PPh}\right)_{2}\right)\right]\left[\mathrm{ClO}_{4}\right]_{2} 3 \boldsymbol{c}$
Suitable crystals of the title compound were grown from slowly evaporating a chloroform solution. The molecular structure is illustrated in Fig. 1. Crystal data
are given in Table 2. Fractional coordinates and isotropic thermal parameters are listed in Table 3. Selected bond lengths and bond angles with estimated standard deviations are listed in Table 4.
The crystal structure comprises a centrosymmetric dinuclear cation (half of the cation per asymmetric

8, 9
Scheme 1. Treatment of the semicarbazone ligands a, b or \mathbf{c} with $\mathrm{Li}_{2}\left[\mathrm{PdCl}_{4}\right]$ in methanol (i) gave compounds $\mathbf{1 a} \mathbf{a} \mathbf{c}$, which were further reacted (ii) to give 2-7 or (iii) 8,9 followed by (iv) resulting in 2-7.
unit), and two perchlorate anions. Each four-coordinated palladium(II) is bonded to a terdentate semicarbazone system through the aryl $\mathrm{C}(1)$ carbon, the imine $\mathrm{N}(1)$ nitrogen and the amide O oxygen atoms, and to a phosphorus atom of a 1,3-bis(diphenylphosphine)propane, which bridges a crystallographic inversion center between the two metal atoms.

The $\operatorname{Pd}-\mathrm{N}(1)$ bond length of 1.98(2) \AA is within the expected value based on the sum of the covalent radii [16] for palladium ($1.31 \AA$) and nitrogen $\left(\mathrm{sp}^{2}\right)(0.7 \AA)$ and similar to others reported [13]. The $\mathrm{Pd}-\mathrm{C}(1)$, 2.00 (2), and $\mathrm{Pd}-\mathrm{P}, 2.246$ (7) \AA, bond lengths are somewhat shorter than the values predicted from their covalent radii [16], and they are similar to values found earlier [13]. The Pd-O length, $2.15 \AA$, is longer then the expected value of 1.97 A , and shows the trans influence of the aryl carbon atom. The sum of angles about the palladium atom is 360.4°, with the only noteworthy deviation being the somewhat reduced $[\mathrm{N}(1)-\mathrm{Pd}-\mathrm{C}(1)]$ bond angle consequent upon chelation, which is reflected in the the value of the $\mathrm{Pd}-\mathrm{C}(1)-\mathrm{C}(6), 130.8^{\circ}$, angle.

The geometry around the palladium atom is planar (r.m.s. $=0.0692 \AA$; plane 1). The metallated ring [Pd, $\mathrm{C}(1), \mathrm{C}(2), \mathrm{C}(7), \mathrm{N}(1)]$ and the coordination ring $[\mathrm{Pd}, \mathrm{N}(1), \mathrm{N}(2), \mathrm{C}(8), \mathrm{O}(1)]$ are also planar (r.m.s. $=$ $0.0189 \AA$ A; plane 2) and (r.m.s. $=0.0289 \AA$; plane 3),
respectively. Angles between planes are as follows: plane $1 /$ plane $2,5.5^{\circ}$; plane $1 /$ plane $3,6.7^{\circ}$; plane 2/plane $3,3.8^{\circ}$.

3. Experimental details

3.1. Materials and instrumentation

Solvents were purified by standard methods [17]. Chemicals were reagent grade. Palladium(II) chloride was a generous loan by Johnson Matthey. The phosphines $\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{PPh}_{2}$ (dppm), $\mathrm{Ph}_{2} \mathrm{P}_{\left(\mathrm{CH}_{2}\right)_{2} \mathrm{PPh}_{2} \text { (dppe), }}$ $\mathrm{Ph}_{2} \mathrm{P}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{PPh}_{2}$ (dppp) and $\mathrm{Ph}_{2} \mathrm{P}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{PPh}_{2}$ (dppb) were purchased from Aldrich-Chemie; $\mathrm{Ph}_{2} \mathrm{PC}\left(=\mathrm{CH}_{2}\right)$ PPh_{2} (vdpp) and trans $-\mathrm{Ph}_{2} \mathrm{PCH}=\mathrm{CHPPh}_{2}$ (trans-dppe) were prepared according to procedures described elsewhere [18]. Microanalyses were carried out at the Servicio de Análisis Elemental at the University of Santiago using a Carlo Erba Elemental Analyser, Model 1108. NMR spectra were obtained as $\mathrm{CDCl}_{3} \mathrm{DMSO}_{\mathrm{d}}^{6}$ or $\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}$ solutions and referenced to $\mathrm{SiMe}_{4}\left({ }^{1} \mathrm{H},{ }^{13} \mathrm{C}\right)$ or $85 \% \mathrm{H}_{3} \mathrm{PO}_{4}\left({ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}\right)$ and were recorded on Bruker WM250, and AMX-300 spectrometers. All chemical shifts were reported downfield from standards.

The synthesis of the semicarbazones 4$\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{C}(\mathrm{Me})=\mathrm{NN}(\mathrm{H}) \mathrm{C}(=\mathrm{O}) \mathrm{NH}_{2}(\mathbf{a}), 3,4-\mathrm{Me}_{2} \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{C}-$

Fig. 1. Molecular structure of $\left[\left\{\mathrm{Pd}\left[\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{C}(\mathrm{Et})=\mathrm{NN}(\mathrm{H}) \mathrm{C}(=\mathrm{O}) \mathrm{NH}_{2}\right]\right\} 2\left(\mu-\mathrm{Ph}_{2} \mathrm{P}-\left(\mathrm{CH}_{2}\right)_{3} \mathrm{PPh}_{2}\right)\right]\left[\mathrm{ClO}_{4}\right]_{2}$.
$(\mathrm{Me})=\mathrm{NN}(\mathrm{H}) \mathrm{C}(=\mathrm{O}) \mathrm{NH}_{2}\left(\right.$ b) and $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C}(\mathrm{Et})=\mathrm{NN}(\mathrm{H}) \mathrm{C}-$ $(=\mathrm{O}) \mathrm{NH}_{2}$ (c) was performed according to methods described in the literature [19]. ${ }^{13} \mathrm{C}-\{1 \mathrm{H}\}$ NMR (75.48 MHz DMSO-d ${ }_{6}$): a, $\delta 157.8(\mathrm{C}=\mathrm{O}) ; \delta 144.5(\mathrm{C}=\mathrm{N}) ; \delta$ 135.9 (C4); $\delta 129.1$ (C3, C5); $\delta 126.2$ (C2, C6); $\delta 21.1$, 13.6 (Me); b, $\delta 157.7$ (C=O); $\delta 144.5$ (C=N); $\delta 127.24$ (C6); $\delta 137.0,136.3,136.2$ (C1, C3, C4); $\delta 123.8$ (C2); $\delta 129.6$ (C5); $\delta 19.5,19.7,13.6(\mathrm{Me}) ; \mathbf{c}, \delta 157.7$ (C=O); $\delta 148.5(\mathrm{C}=\mathrm{N}) ; \delta 137.2(\mathrm{C} 1) ; \delta 128.5,128.4,126.1(\mathrm{C} 2$, $\mathrm{C} 3, \mathrm{C} 4, \mathrm{C} 5, \mathrm{C} 6) ; \delta 18.9\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right) ; \delta 10.5\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)$.

3.2. Preparations

3.2.1. $\left[P d\left\{4-\mathrm{MeC}_{6} \mathrm{H}_{3} \mathrm{C}(\mathrm{Me})=\mathrm{NN}(\mathrm{H}) \mathrm{C}(=\mathrm{O}) \mathrm{NH}_{2}\right\}(\mathrm{Cl})\right]$

 $1 a$To a stirred solution of lithium tetrachloropalladate in 50 ml of methanol, prepared in situ from 200 mg $(1.13 \mathrm{mmol})$ of palladium(II) chloride and $100 \mathrm{mg}(2.33$ $\mathrm{mmol})$ of lithium chloride, $100 \mathrm{mg}(1.22 \mathrm{mmol})$ of sodium acetate and $240 \mathrm{mg}(1.25 \mathrm{mmol})$ of the semicarbazone $4-\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{C}(\mathrm{Me})=\mathrm{NN}(\mathrm{H}) \mathrm{C}(=\mathrm{O}) \mathrm{NH}_{2}$ (a) were added. The mixture was stirred for 48 h at room temperature. The precipitate was filtered off and washed with methanol. The solid was added to 50 ml of ethanol and heated to reflux. The hot mixture was filtered and the pale-yellow solid resulting dried in air. Yield 80%. Anal. Found: C, 36.4; H, 3.7; N, 12.4. $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{~N}_{3} \mathrm{OClPd}$ Calc.: C, 36.2; H, 3.6; N, 12.6%. IR: $v(\mathrm{C}=\mathrm{O}) 1670 \mathrm{~s}, v(\mathrm{C}=\mathrm{N}) 1620 \mathrm{~s}, v(\mathrm{Pd}-\mathrm{Cl}) 340 \mathrm{w} \mathrm{cm}{ }^{-1}$.
${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR (62.46 MHz DMSO- d_{6}): $\delta 166.0(\mathrm{C}=\mathrm{O})$; $\delta 159.8(\mathrm{C}=\mathrm{N}) ; \delta 149.7$ (C6); $\delta 144.6$ (C1); $\delta 139.3(\mathrm{C} 4) ;$ $\delta 137.8(\mathrm{C} 5) ; \delta 129.14,126.2(\mathrm{C} 2, \mathrm{C} 3): \delta 21.9,14.2$ (Me).
Compounds 1b and 1c were obtained following a similar procedure as yellow solids.

3.2.2. $\left[P d\left\{3,4-\mathrm{Me}_{2} \mathrm{C}_{6} \mathrm{H}_{2} \mathrm{C}(\mathrm{Me})=\mathrm{NN}(\mathrm{H}) \mathrm{C}(=\mathrm{O}) \mathrm{NH}_{2}\right\}(\mathrm{Cl})\right]$ $1 b$

Yield 85%. Anal. Found: C, 38.0; H, 4.0; N, 11.8. $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{~N}_{3} \mathrm{OClPd}$ Calc.: C, $38.2 ; \mathrm{H}, 4.1 ; \mathrm{N}, 12.1 \%$. IR: $v(\mathrm{C}=\mathrm{O}) 1649 \mathrm{~s}, v(\mathrm{C}=\mathrm{N}) 1628 \mathrm{~s}, v(\mathrm{Pd}-\mathrm{Cl}) 332 \mathrm{w} \mathrm{cm}-1$. ${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(62.46 \mathrm{MHz}\right.$ DMSO- $\left.\mathrm{d}_{6}\right): \delta(\mathrm{C}=\mathrm{O}) ; \delta$ (C=N); $\delta(\mathrm{C} 6) ; ~ \delta 145.2(\mathrm{C} 1) ; \delta 137.7,135.9,132.7$, 131.9, 122.0 (C2, C3, C4, C5); $\delta 20.13,11.17$ (Me).

3.2.3. $\left[P d\left\{C_{6} H_{4} C(E t)=N N(H) C(=O) N H_{2}\right\}(C l)\right] 1 c$

Yield 73%. Anal. Found: C, 36.1; H, 3.8; N, 12.6. $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{~N}_{3} \mathrm{OClPd}$ Calc.: C, 36.2; H, 3.6; N, 12.6%. IR: $v(\mathrm{C}=\mathrm{O}) 1645 \mathrm{~s}, v(\mathrm{C}=\mathrm{N}) 1616 \mathrm{~s}, v(\mathrm{Pd}-\mathrm{Cl}) 347 \mathrm{w} \mathrm{cm}{ }^{-1}$. ${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ (62.46 MHz DMSO-d d_{6}): $\delta(\mathrm{C}=\mathrm{O}) ; \delta$ (C=N); $\delta 150.0$ (C6); $\delta 146.7$ (C1); $\delta 135.0$ (C5); $\delta 129.4$, $126.9,124.7(\mathrm{C} 2, \mathrm{C} 3, \mathrm{C} 4) ; \delta 20.13\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right) ; \delta 11.2$ $\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)$.

3.2.4. $\left[\left\{P d\left[4-\mathrm{MeC}_{6} \mathrm{H}_{3} \mathrm{C}(\mathrm{Me})=\mathrm{NN}(\mathrm{H}) \mathrm{C}(=\mathrm{O})-\right.\right.\right.$
 $\left.\left.\mathrm{NH}_{2}\right]_{2}\left(\mu-\mathrm{Ph}_{2} \mathrm{P}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{PPh}_{2}\right)\right]\left[\mathrm{ClO}_{4}\right]_{2} 2 \mathrm{Ca}$

A suspension of $\mathbf{1 a}(50 \mathrm{mg}, 0.15 \mathrm{mmol})$ in acetone (15 cm^{3}) was treated with silver perchlorate (32 mg) and
stirred for 2 h . The solution was filtered through Celite to eliminate the AgCl precipitate. $\mathrm{Ph}_{2} \mathrm{P}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{PPh}_{2}$ (32 $\mathrm{mg}, 0.08 \mathrm{mmol}$) was added to the filtrate and the solution stirred for 4 h , the solvent removed and the product recrystallized from dichloromethane/hexane to give the desired complex as a white solid. Yield 82%. Anal. Found: C, 47.6; H, 4.3; N, 7.1. $\mathrm{C}_{48} \mathrm{H}_{52} \mathrm{~N}_{6} \mathrm{O}_{10} \mathrm{Cl}_{2} \mathrm{Pd}_{2} \mathrm{P}_{2}$ Calc.: C, 47.3; H, 4.3; N, 6.9\%. IR: $v(\mathrm{C}=\mathrm{O}) 1651 \mathrm{~m}, v(\mathrm{C}=\mathrm{N}) 1631 \mathrm{sh} \mathrm{cm}^{-1}$. Specific molar conductivity, $\Lambda_{\mathrm{m}}=250 \mathrm{ohm}^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$ (in acetonitrile).

Compounds $\mathbf{3 a}-\mathbf{7 a}, \mathbf{2 b}-\mathbf{7 b}$ and $\mathbf{2 c}-\mathbf{7 c}$, were synthesized following a similar procedure as white or yellow solids.

3.2.5. $\left[\left\{P d\left[4-\mathrm{MeC}_{6} \mathrm{H}_{3} \mathrm{C}(\mathrm{Me})=\mathrm{NN}(\mathrm{H}) \mathrm{C}(=\mathrm{O})-\right.\right.\right.$ $\left.\left.\mathrm{NH}_{2}\right]_{2}\left(\mu-\mathrm{Ph}_{2} \mathrm{P}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{PPh}_{2}\right)\right]\left[\mathrm{ClO}_{4}\right]_{2} 3 \boldsymbol{3}$

Yield 90%. Anal. Found: C, $46.8 ; \mathrm{H}, 4.1 ; \mathrm{N}, 6.8$. $\mathrm{C}_{47} \mathrm{H}_{50} \mathrm{~N}_{6} \mathrm{O}_{10} \mathrm{Cl}_{2} \mathrm{Pd}_{2} \mathrm{P}_{2}$. Calc.: C, 46.8; H, 4.2; N, 7.0%. IR: $v(\mathrm{C}=\mathrm{O}) 1651 \mathrm{~s}, v(\mathrm{C}=\mathrm{N}) 1637 \mathrm{sh} \mathrm{cm}^{-1}$. Specific molar conductivity, $\Lambda_{\mathrm{m}}=300 \mathrm{ohm}^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$ (in acetonitrile).

Table 2
Crystal data for 3c

Empirical formula	$\mathrm{C}_{47} \mathrm{H}_{50} \mathrm{Cl}_{2} \mathrm{~N}_{6} \mathrm{O}_{10}$
	$\mathrm{P}_{2} \mathrm{Pd}_{2}$
Formula weight	1204.6
Crystal system	Monoclinic
Space group	$C 2 / c$
Unit cell dimensions	
$a(\AA)$	$25.044(7)$
$b(\AA)$	$10.847(1)$
$c(\AA)$	$24.034(7)$
$\beta\left({ }^{\circ}\right)$	$121.83(3)$
Volume	$5547(5) \AA^{3}$
Z	4
$D_{\text {calc. }}(\mathrm{g}$ cm	
Absorption coefficient (cm $\left.{ }^{-1}\right)$	1.442
$F(000)$	8.477
Crystal size (mm)	2440
	0.40×0.25
Minimum, Maximum, absorption correction	$\times 0.30$
Maximum value of (sin $\theta) / \lambda$ reached in	$0.430 / 1.126$
\quad intensity mesurement $\left(\AA^{-1}\right)$	0.660
Total no. of reflections measured, θ range	$14359,3-28^{\circ}$
No. of unique reflections; $R_{\text {int }}$	$13725,0.045$
No. of observed reflections	1738
Criterion for observed reflections	$I>3 \sigma(I)$
Weighting scheme	$1 / \sigma^{2}(F)$
Parameters refined	219
Value of R	0.086
Value of $w R$	0.099
Ratio of max. LS shift to e.s.d. (Δ / σ)	0.02
Max. $\Delta \rho$ in final difference electron density	1.342
map (e $\left.\AA \AA^{-3}\right)$	
Error in an observation of unit weight	13.467

Table 3
Atomic coordinates and equivalent isotropic displacement parameters $\left(\AA^{2}\right)$ for $3 c$

	x	y	z	$B_{\text {iso }}$
Pd	$0.35502(7)$	$0.6949(2)$	$0.11584(7)$	$2.68(3)$
Cl	$0.0631(3)$	$0.2399(7)$	$0.6070(3)$	$5.8(2)$
P	$0.3763(2)$	$0.6142(5)$	$0.2115(2)$	$2.5(1)$
O	$0.4051(6)$	$0.567(1)$	$0.0920(6)$	$4.1(4)$
$\mathrm{O}(1)$	$0.0833(9)$	$0.271(2)$	$0.672(1)$	$9.3(7)$
$\mathrm{O}(2)$	$0.043(2)$	$0.126(4)$	$0.584(2)$	$21(2)$
$\mathrm{O}(3)$	$0.024(2)$	$0.324(5)$	$0.559(2)$	$24(2)$
$\mathrm{O}(4)$	$0.110(2)$	$0.271(4)$	$0.599(2)$	$19(1)$
$\mathrm{N}(1)$	$0.3473(7)$	$0.771(2)$	$0.0375(7)$	$4.0(5)$
$\mathrm{N}(2)$	$0.3781(7)$	$0.710(2)$	$0.0111(7)$	$3.8(4)$
$\mathrm{N}(3)$	$0.4356(8)$	$0.538(2)$	$0.0200(8)$	$4.8(6)$
$\mathrm{C}(1)$	$0.2996(7)$	$0.839(2)$	$0.1034(9)$	$2.2(5)$
$\mathrm{C}(2)$	$0.2903(8)$	$0.911(2)$	$0.0505(9)$	$3.0(5)$
$\mathrm{C}(3)$	$0.2508(9)$	$1.015(2)$	$0.033(1)$	$4.2(6)$
$\mathrm{C}(4)$	$0.2247(9)$	$1.048(2)$	$0.069(1)$	$4.9(7)$
$\mathrm{C}(5)$	$0.235(1)$	$0.976(2)$	$0.120(1)$	$4.6(7)$
$\mathrm{C}(6)$	$0.2729(9)$	$0.873(2)$	$0.138(1)$	$3.7(5)$
$\mathrm{C}(7)$	$0.3176(9)$	$0.874(2)$	$0.014(1)$	$3.8(6)$
$\mathrm{C}(8)$	$0.317(1)$	$0.946(2)$	$-0.040(1)$	$4.8(7)$
$\mathrm{C}(9)$	$0.367(1)$	$1.043(3)$	$-0.013(1)$	$8.1(9)$
$\mathrm{C}(10)$	$0.4051(8)$	$0.604(2)$	$0.043(1)$	$4.2(6)$
$\mathrm{C}(11)$	$0.4037(7)$	$0.716(2)$	$0.2828(8)$	$2.3(4)$
$\mathrm{C}(12)$	$0.4189(9)$	$0.833(2)$	$0.281(1)$	$4.1(5)$
$\mathrm{C}(13)$	$0.445(1)$	$0.903(3)$	$0.340(1)$	$5.5(7)$
$\mathrm{C}(14)$	$0.456(1)$	$0.850(3)$	$0.396(1)$	$5.3(6)$
$\mathrm{C}(15)$	$0.438(1)$	$0.740(2)$	$0.396(1)$	$4.6(6)$
$\mathrm{C}(16)$	$0.414(1)$	$0.664(2)$	$0.341(1)$	$4.5(6)$
$\mathrm{C}(21)$	$0.3162(8)$	$0.517(2)$	$0.2094(9)$	$3.1(4)$
$\mathrm{C}(22)$	$0.267(1)$	$0.573(2)$	$0.213(1)$	$4.3(6)$
$\mathrm{C}(23)$	$0.218(1)$	$0.497(3)$	$0.204(1)$	$4.9(6)$
$\mathrm{C}(24)$	$0.219(1)$	$0.374(2)$	$0.195(1)$	$4.7(6)$
$\mathrm{C}(25)$	$0.263(1)$	$0.318(3)$	$0.188(1)$	$6.4(7)$
$\mathrm{C}(26)$	$0.314(1)$	$0.393(2)$	$0.196(1)$	$4.7(6)$
$\mathrm{C}(31)$	$0.4430(9)$	$0.515(2)$	$0.2343(9)$	$3.5(5)$
$\mathrm{C}(32)$	0.500	$0.590(3)$	0.250	$2.0(5)$

3.2.6. $\left[\left\{\mathrm{PPd}^{2}\left[4-\mathrm{MeC}_{6} \mathrm{H}_{3} \mathrm{C}(\mathrm{Me})=\mathrm{NN}(\mathrm{H}) \mathrm{C}(=\mathrm{O})-\right.\right.\right.$ $\left.\left.\left.\mathrm{NH}_{2}\right]\right\}_{2}\left(\mu-\mathrm{Ph}_{2} \mathrm{P}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{PPh}_{2}\right)\right]\left[\mathrm{ClO}_{4}\right]_{2} 4 a$

Yield 74%. Anal. Found: C, 46.3; H, 4.3; N, 7.0. $\mathrm{C}_{46} \mathrm{H}_{48} \mathrm{~N}_{6} \mathrm{O}_{10} \mathrm{Cl}_{2} \mathrm{Pd}_{2} \mathrm{P}_{2}$. Calc.: C, 46.4; H, 4.1; N, 7.1%. IR: $v(\mathrm{C}=\mathrm{O}) 1649 \mathrm{~s}, v(\mathrm{C}=\mathrm{N}) 1635 \mathrm{sh} \mathrm{cm}^{-1}$. Specific molar conductivity, $\Lambda_{\mathrm{m}}=308 \mathrm{ohm}^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$ (in acetonitrile).

3.2.7. $\left[\left\{{ }^{2} d\left[4-\mathrm{MeC}_{6} \mathrm{H}_{3} \mathrm{C}(\mathrm{Me})=\mathrm{NN}(\mathrm{H}) \mathrm{C}(=\mathrm{O})-\right.\right.\right.$
 $\left.\mathrm{NH}_{2}\right]_{2}\left(\mu\right.$-trans $\left.\left.-\mathrm{Ph}_{2} \mathrm{PCH}=\mathrm{CHPPh}_{2}\right)\right]\left[\mathrm{ClO}_{4}\right]_{2} \mathbf{5 a}$

Yield 68%. Anal. Found: C, 46.6; H, 3.6; N, 7.1. $\mathrm{C}_{46} \mathrm{H}_{46} \mathrm{~N}_{6} \mathrm{O}_{10} \mathrm{Cl}_{2} \mathrm{Pd}_{2} \mathrm{P}_{2}$. Calc.: C, $46.5 ; \mathrm{H}, 3.9 ; \mathrm{N}, 7.1 \%$. IR: $v(\mathrm{C}=\mathrm{O}) 1641 \mathrm{~s}, v(\mathrm{C}=\mathrm{N}) 1585 \mathrm{~m} \mathrm{~cm}^{-1}$. Specific molar conductivity, $\Lambda_{\mathrm{m}}=315 \mathrm{ohm}^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$ (in acetonitrile).

3.2.8. $\left[\left\{P d\left[4-\mathrm{MeC}_{6} \mathrm{H}_{3} \mathrm{C}(\mathrm{Me})=N N(H) C(=O)-\right.\right.\right.$
 $\left.\left.\mathrm{NH}_{2}\right]_{\}_{2}}\left(\mu-\mathrm{Ph}_{2} \mathrm{PC}\left(=\mathrm{CH}_{2}\right) P \mathrm{Ph} h_{2}\right)\right]\left[\mathrm{ClO}_{4}\right]_{2} \boldsymbol{\sigma} \boldsymbol{a}$

Yield 81%. Anal. Found: C, 46.2; H, 3.8; N, 7.3. $\mathrm{C}_{46} \mathrm{H}_{46} \mathrm{~N}_{6} \mathrm{O}_{10} \mathrm{Cl}_{2} \mathrm{Pd}_{2} \mathrm{P}_{2}$. Calc.: C, 46.5; H, 3.9; $\mathrm{N}, 7.1 \%$. IR: $v(\mathrm{C}=\mathrm{O}) 1649 \mathrm{~s}, v(\mathrm{C}=\mathrm{N}) 1634 \mathrm{sh} \mathrm{cm}^{-1}$. Specific molar conductivity, $\Lambda_{\mathrm{m}}=320 \mathrm{ohm}^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$ (in acetonitrile).

3.2.9. $\left[\left\{P d\left[4-\mathrm{MeC}_{6} \mathrm{H}_{3} \mathrm{C}(\mathrm{Me})=\mathrm{NN}(\mathrm{H}) \mathrm{C}(=\mathrm{O})-\right.\right.\right.$ $\left.\left.\left.\mathrm{NH}_{2}\right]\right\}_{2}\left(\mu-\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{PPh}_{2}\right)\right]\left[\mathrm{ClO}_{4}\right]_{2} 7 a$

Yield 80%. Anal. Found: C, 45.2; H, 3.7; N, 7.0. $\mathrm{C}_{45} \mathrm{H}_{46} \mathrm{~N}_{6} \mathrm{O}_{10} \mathrm{Cl}_{2} \mathrm{Pd}_{2} \mathrm{P}_{2}$. Calc.: C, $45.9 ; \mathrm{H}, 3.9 ; \mathrm{N}, 7.1 \%$. IR: $v(\mathrm{C}=\mathrm{O}) 1651 \mathrm{~s}, v(\mathrm{C}=\mathrm{N}) 1631 \mathrm{sh} \mathrm{cm}{ }^{-1}$. Specific molar conductivity, $\Lambda_{\mathrm{m}}=290 \mathrm{ohm}^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$ (in acetonitrile).
3.2.10. $\left[\left\{P d\left[3,4-\mathrm{Me}_{2} \mathrm{C}_{6} \mathrm{H}_{2} \mathrm{C}(\mathrm{Me})=N N(\mathrm{H}) \mathrm{C}(=\mathrm{O})-\right.\right.\right.$ $\left.\left.\mathrm{NH}_{2}\right]_{2}\left(\mu-\mathrm{Ph}_{2} \mathrm{P}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{PPh}_{2}\right)\right]\left[\mathrm{ClO}_{4}\right]_{2} 2 \boldsymbol{b}$

Yield 77%. Anal. Found: C, $48.2 ; \mathrm{H}, 4.5 ; \mathrm{N}, 6.7$. $\mathrm{C}_{50} \mathrm{H}_{56} \mathrm{~N}_{6} \mathrm{O}_{10} \mathrm{Cl}_{2} \mathrm{Pd}_{2} \mathrm{P}_{2}$. Calc.: C, 48.2; H, 4.5; N, 6.7%. IR: $v(\mathrm{C}=\mathrm{O}) 1649 \mathrm{~m}, v(\mathrm{C}=\mathrm{N}) 1630 \mathrm{sh} \mathrm{cm}^{-1}$. Specific molar conductivity, $\Lambda_{\mathrm{m}}=325 \mathrm{ohm}^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$ (in acetonitrile).

3.2.11. $\left[\left\{P d\left\{3,4-\mathrm{Me}_{2} \mathrm{C}_{6} \mathrm{H}_{2} \mathrm{C}(\mathrm{Me})=N N(H) C(=O)-\right.\right.\right.$ $\left.\left.\mathrm{NH}_{2}\right]_{2}\left(\mu-\mathrm{Ph}_{2} \mathrm{P}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{PPh}_{2}\right)\right]\left[\mathrm{ClO}_{4}\right]_{2} 3 \boldsymbol{b}$

Yield 85%. Anal. Found: C, 47.6; H, 4.3; N, 6.7. $\mathrm{C}_{49} \mathrm{H}_{54} \mathrm{~N}_{6} \mathrm{O}_{10} \mathrm{Cl}_{2} \mathrm{Pd}_{2} \mathrm{P}_{2}$. Calc.: C, $47.7 ; \mathrm{H}, 4.4 ; \mathrm{N}, 6.8 \%$. IR: $v(\mathrm{C}=\mathrm{O}) 1651 \mathrm{~s}, v(\mathrm{C}=\mathrm{N}) 1630 \mathrm{sh} \mathrm{cm}^{-1}$. Specific molar conductivity, $\Lambda_{\mathrm{m}}=310 \mathrm{ohm}^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$ (in acetonitrile).

Table 4
Selected bond lengths $[\AA]$ and angles $\left[{ }^{\circ}\right]$ for $\mathbf{3 c}$

Bond lengths (Å)			
Pd-C(1)	$2.00(2)$	$\mathrm{Pd}-\mathrm{N}(1)$	$1.98(2)$
$\mathrm{Pd}-\mathrm{O}$	$2.15(2)$	$\mathrm{Pd}-\mathrm{P}$	$2.246(7)$
$\mathrm{O}-\mathrm{C}(10)$	$1.25(3)$	$\mathrm{N}(1)-\mathrm{N}(2)$	$1.40(3)$
$\mathrm{P}-\mathrm{C}(11)$	$1.84(2)$	$\mathrm{P}-\mathrm{C}(21)$	$1.81(2)$
$\mathrm{P}-\mathrm{C}(31)$	$1.81(2)$	$\mathrm{N}(1)-\mathrm{C}(7)$	$1.29(3)$
$\mathrm{N}(2)-\mathrm{C}(10)$	$1.35(3)$	$\mathrm{N}(3)-\mathrm{C}(10)$	$1.35(4)$
$\mathrm{C}(1)-\mathrm{C}(2)$	$1.41(3)$	$\mathrm{C}(2)-\mathrm{C}(7)$	$1.43(4)$
Bond angles $\left(^{\circ}\right)$			
$\mathrm{P}-\mathrm{Pd}-\mathrm{O}$			
$\mathrm{N} 1-\mathrm{Pd}-\mathrm{C}(1)$	$99.5(4)$	$\mathrm{O}-\mathrm{Pd}-\mathrm{N}(1)$	$103.1(7)$
$\mathrm{O}-\mathrm{Pd}-\mathrm{C}(1)$	$79.6(9)$	$\mathrm{P}-\mathrm{Pd}-\mathrm{C}(1)$	$173.1(5)$
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(7)$	$157.3(7)$	$\mathrm{P}-\mathrm{Pd}-\mathrm{N}(1)$	$108(2)$
$\mathrm{N}(1)-\mathrm{C}(7)-\mathrm{C}(8)$	$125(3)$	$\mathrm{N}(1)-\mathrm{C}(7)-\mathrm{C}(2)$	$122(3)$
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(7)$	$122(2)$	$\mathrm{N}(2)-\mathrm{N}(1)-\mathrm{C}(7)-\mathrm{C}(7)-\mathrm{C}(8)$	$126(2)$
$\mathrm{N}(2)-\mathrm{C}(10)-\mathrm{N}(3)$	$116(2)$	$\mathrm{N}(1)-\mathrm{N}(2)-\mathrm{C}(10)$	$113(2)$
$\mathrm{O}-\mathrm{C}(10) \mathrm{N}(2)$	$124(2)$	$\mathrm{O}-\mathrm{C}(10)-\mathrm{N}(3)$	$120(2)$
$\mathrm{C}(11)-\mathrm{P}-\mathrm{C}(21)$	$106(2)$	$\mathrm{C}(11)-\mathrm{P}-\mathrm{C}(31)$	$104.1(8)$
$\mathrm{C}(21)-\mathrm{P}-\mathrm{C}(31)$	$106(2)$	$\mathrm{P}-\mathrm{C}(31)-\mathrm{C}(32)$	$111(2)$

3.2.12. $\left[\left\{P d\left\{3,4-\mathrm{Me}_{2} \mathrm{C}_{6} \mathrm{H}_{2} \mathrm{C}(\mathrm{Me})=\mathrm{NN}(\mathrm{H}) \mathrm{C}(=\mathrm{O})-\right.\right.\right.$
 $\left.\left.\mathrm{NH}_{2}\right]_{\}_{2}}\left(\mu-\mathrm{Ph}_{2} \mathrm{P}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{PPh}_{2}\right)\right]\left[\mathrm{ClO}_{4}\right]_{2} 4 b$

Yield 89%. Anal. Found: C, 42.8; H, 4.5; N, 6.6. $\mathrm{C}_{48} \mathrm{H}_{52} \mathrm{~N}_{6} \mathrm{O}_{10} \mathrm{Cl}_{2} \mathrm{Pd}_{2} \mathrm{P}_{2}$. Calc.: C, 47.3; H, 4.3; N, 6.9%. IR: $v(\mathrm{C}=\mathrm{O}) 1643 \mathrm{~m}, v(\mathrm{C}=\mathrm{N}) 1630 \mathrm{sh} \mathrm{cm}^{-1}$. Specific molar conductivity, $\Lambda_{\mathrm{m}}=340 \mathrm{ohm}^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$ (in acetonitrile).

3.2.13. $\left[\left\{P d\left[3,4-\mathrm{Me}_{2} \mathrm{C}_{6} \mathrm{H}_{2} \mathrm{C}(\mathrm{Me})=N N(H) C(=O)-\right.\right.\right.$
 $\left.\left.\left.\mathrm{NH}_{2}\right]_{\}_{2}}\left(\mu \text {-trans }-\mathrm{Ph}_{2} \mathrm{PCH}=\mathrm{CHPPh}\right)_{2}\right)\right]\left[\mathrm{ClO}_{4}\right]_{2} \mathbf{5 b}$

Yield 76%. Anal. Found: C, $47.7 ; \mathrm{H}, 4.1 ; \mathrm{N}, 6.7$. $\mathrm{C}_{48} \mathrm{H}_{50} \mathrm{~N}_{6} \mathrm{O}_{10} \mathrm{Cl}_{2} \mathrm{Pd}_{2} \mathrm{P}_{2}$. Calc.: C, $47.4 ; \mathrm{H}, 4.1 ; \mathrm{N}, 6.9 \%$. IR: $v(\mathrm{C}=\mathrm{O}) 1647 \mathrm{~m}, v(\mathrm{C}=\mathrm{N}) 1628 \mathrm{sh} \mathrm{cm}{ }^{-1}$. Specific molar conductivity, $\Lambda_{\mathrm{m}}=333 \mathrm{ohm}^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$ (in acetonitrile).

3.2.14. $\left[\left\{P d\left[3,4-\mathrm{Me}_{2} \mathrm{C}_{6} \mathrm{H}_{2} \mathrm{C}(\mathrm{Me})=N N(H) C(=O)-\right.\right.\right.$ $\left.\left.\left.\mathrm{NH}_{2}\right]\right\}_{2}\left(\mu-\mathrm{Ph}_{2} \mathrm{PC}\left(=\mathrm{CH}_{2}\right) \mathrm{PPh}_{2}\right)\right]\left[\mathrm{ClO}_{4}\right]_{2} \boldsymbol{\sigma} \boldsymbol{b}$

Yield 78%. Anal. Found: C, $47.1 ; \mathrm{H}, 4.1 ; \mathrm{N}, 6.8$. $\mathrm{C}_{48} \mathrm{H}_{50} \mathrm{~N}_{6} \mathrm{O}_{10} \mathrm{Cl}_{2} \mathrm{Pd}_{2} \mathrm{P}_{2}$. Calc.: C, $47.4 ; \mathrm{H}, 4.1 ; \mathrm{N}, 6.9 \%$. IR: $v(\mathrm{C}=\mathrm{O}) 1647 \mathrm{~s}, v(\mathrm{C}=\mathrm{N}) 1631 \mathrm{sh} \mathrm{cm}^{-1}$. Specific molar conductivity, $\Lambda_{\mathrm{m}}=300 \mathrm{ohm}^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$ (in acetonitrile).

3.2.15. $\left[\left\{P d\left[3,4-\mathrm{Me}_{2} \mathrm{C}_{6} \mathrm{H}_{2} \mathrm{C}(\mathrm{Me})=\mathrm{NN}(\mathrm{H}) \mathrm{C}(=\mathrm{O})-\right.\right.\right.$ $\left.\left.\mathrm{NH}_{2}\right]_{2}\left(\mu-\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{PPh}_{2}\right)\right]\left[\mathrm{ClO}_{4}\right]_{2} 7 \boldsymbol{b}$

Yield 62%. Anal. Found: C, 46.9; H, 4.0; N, 7.1. $\mathrm{C}_{47} \mathrm{H}_{50} \mathrm{~N}_{6} \mathrm{O}_{10} \mathrm{Cl}_{2} \mathrm{Pd}_{2} \mathrm{P}_{2}$. Calc.: C, $46.9 ; \mathrm{H}, 4.2 ; \mathrm{N}, 7.0 \%$. IR: $v(\mathrm{C}=\mathrm{O}) 1660 \mathrm{~s}, v(\mathrm{C}=\mathrm{N}) 1643 \mathrm{~s} \mathrm{~cm}{ }^{-1}$. Specific molar conductivity, $\Lambda_{\mathrm{m}}=342 \mathrm{ohm}^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$ (in acetonitrile).
3.2.16. $\left[\left\{\mathrm{Pd}_{[6} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{C}(\mathrm{Et})=\mathrm{NN}(\mathrm{H}) \mathrm{C}(=\mathrm{O})-\right.\right.$
$\left.\left.\mathrm{NH}_{2}\right]_{\}}\left(\mu-\mathrm{Ph}_{2} \mathrm{P}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{PPh}_{2}\right)\right]\left[\mathrm{ClO}_{4}\right]_{2} 2 c$
Yield 77%. Anal. Found: C, 47.5; H, 4.2; N, 6.6. $\mathrm{C}_{48} \mathrm{H}_{52} \mathrm{~N}_{6} \mathrm{O}_{10} \mathrm{Cl}_{2} \mathrm{Pd}_{2} \mathrm{P}_{2}$. Calc.: C, 47.3; H, 4.3; N, 6.9%. IR: $v(\mathrm{C}=\mathrm{O}) 1649 \mathrm{~m}, v(\mathrm{C}=\mathrm{N}) 1631 \mathrm{w} \mathrm{cm}{ }^{-1}$. Specific molar conductivity, $\Lambda_{\mathrm{m}}=250 \mathrm{ohm}^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$ (in acetonitrile).

3.2.17. $\left[\left\{\mathrm{Pd}_{[}\left[\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{C}(\mathrm{Et})=\mathrm{NN}(\mathrm{H}) \mathrm{C}(=\mathrm{O})-\right.\right.\right.$

$\left.\left.\left.\left.\mathrm{NH}_{2}\right\}(\mathrm{Cl})\right]\right\}_{2}\left(\mu-\mathrm{Ph}_{2} \mathrm{P}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{PPh}_{2}\right)\right]\left[\mathrm{ClO}_{4}\right]_{2} 3 \mathrm{c}$
Yield 69%. Anal. Found: C, $46.8 ; \mathrm{H}, 4.0 ; \mathrm{N}, 7.1$. $\mathrm{C}_{47} \mathrm{H}_{50} \mathrm{~N}_{6} \mathrm{O}_{10} \mathrm{Cl}_{2} \mathrm{Pd}_{2} \mathrm{P}_{2}$. Calc.: C, $46.8 ; \mathrm{H}, 4.2 ; \mathrm{N}, 7.0 \%$. IR: $v(\mathrm{C}=\mathrm{O}) 1649 \mathrm{~s}, v(\mathrm{C}=\mathrm{N}) 1631 \mathrm{~s} \mathrm{~cm}{ }^{-1}$. Specific molar conductivity, $\Lambda_{\mathrm{m}}=312 \mathrm{ohm}^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$ (in acetonitrile).
3.2.18. $\left[\left\{\mathrm{Pd}_{[6} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{C}(\mathrm{Et})=\mathrm{NN}(\mathrm{H}) \mathrm{C}(=\mathrm{O})-\right.\right.$
$\left.\left.\left.\left.\mathrm{NH}_{2}\right\}(\mathrm{Cl})\right]\right\}_{2}\left(\mu-\mathrm{Ph}_{2} \mathrm{P}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{PPh}_{2}\right)\right]\left[\mathrm{ClO}_{4}\right]_{2} 4 \mathrm{c}$
Yield 85%. Anal. Found: C, 46.3 ; H, 4.2; N, 6.6. $\mathrm{C}_{46} \mathrm{H}_{48} \mathrm{~N}_{6} \mathrm{O}_{10} \mathrm{Cl}_{2} \mathrm{Pd}_{2} \mathrm{P}_{2}$. Calc.: C, $46.4 ; \mathrm{H}, 4.1 ; \mathrm{N}, 7.1 \%$. IR: $v(\mathrm{C}=\mathrm{O}) 1649 \mathrm{~m}, v(\mathrm{C}=\mathrm{N}) 1646 \mathrm{sh} \mathrm{cm}^{-1}$. Specific molar conductivity, $\Lambda_{\mathrm{m}}=235 \mathrm{ohm}^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$ (in acetonitrile).
3.2.19. $\left[\left\{\mathrm{Pd}_{[}\left[\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{C}(E t)=N N(H) C(=O)\right.\right.\right.$ -
$\left.\left.\left.\mathrm{NH}_{2}\right\}(\mathrm{Cl})\right]\right\}_{2}\left(\mu\right.$-trans $\left.\left.-\mathrm{Ph}_{2} \mathrm{PCH}=\mathrm{CH}-\mathrm{PPh}_{2}\right)\right]\left[\mathrm{ClO}_{4}\right]_{2} \mathbf{5 c}$
Yield 85%. Anal. Found: C, 46.6; H, 3.9; N, 6.9. $\mathrm{C}_{46} \mathrm{H}_{46} \mathrm{~N}_{6} \mathrm{O}_{10} \mathrm{Cl}_{2} \mathrm{Pd}_{2} \mathrm{P}_{2}$. Calc.: C, 46.5 ; H, 3.9; N, 7.1%. IR: $v(\mathrm{C}=\mathrm{O}) 1651 \mathrm{~s}, v(\mathrm{C}=\mathrm{N}) 1626 \mathrm{sh} \mathrm{cm}^{-1}$. Specific molar conductivity, $\Lambda_{\mathrm{m}}=290 \mathrm{ohm}^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$ (in acetonitrile).

3.2.20. $\left[\left\{{ }^{2}\right]\left[C_{6} H_{4} C(E t)=N N(H) C(=O)-\right.\right.$ $\left.\left.\mathrm{NH}_{2}\right\}(\mathrm{Cl}]_{2}\left(\mu-\mathrm{Ph}_{2} \mathrm{PC}\left(=\mathrm{CH}_{2}\right) P \mathrm{Ph} h_{2}\right)\right]\left[\mathrm{ClO}_{4}\right]_{2} \boldsymbol{6} \boldsymbol{c}$

Yield 85%. Anal. Found: C, 46.7; H, 3.8; N, 7.2. $\mathrm{C}_{46} \mathrm{H}_{46} \mathrm{~N}_{6} \mathrm{O}_{10} \mathrm{Cl}_{2} \mathrm{Pd}_{2} \mathrm{P}_{2}$. Calc.: C, 46.5; H, 3.9; N, 7.1%. IR: $v(\mathrm{C}=\mathrm{O}) 1649 \mathrm{~s}, v(\mathrm{C}=\mathrm{N}) 1626 \mathrm{sh} \mathrm{cm}{ }^{-1}$. Specific molar conductivity, $\Lambda_{\mathrm{m}}=316 \mathrm{ohm}^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$ (in acetonitrile).

3.2.21. $\left[\left\{\mathrm{Pd}_{[}\left[\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{C}(\mathrm{Et})=\mathrm{NN}(\mathrm{H}) \mathrm{C}(=\mathrm{O})\right.\right.\right.$ -

$\left.\left.\left.\mathrm{NH}_{2}\right\}(\mathrm{Cl})\right]_{2}\left(\mu-\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{PPh}_{2}\right)\right]\left[\mathrm{ClO}_{4}\right]_{2} 7 \mathrm{c}$
Yield 86%. Anal. Found: C, 45.5; H, 3.8; N, 7.1. $\mathrm{C}_{45} \mathrm{H}_{46} \mathrm{~N}_{6} \mathrm{O}_{10} \mathrm{Cl}_{2} \mathrm{Pd}_{2} \mathrm{P}_{2}$. Calc.: C, $45.9 ; \mathrm{H}, 3.9 ; \mathrm{N}, 7.1 \%$. IR: $v(\mathrm{C}=\mathrm{O}) 1655 \mathrm{~s}, v(\mathrm{C}=\mathrm{N}) 1628 \mathrm{~m} \mathrm{~cm}^{-1}$. Specific molar conductivity, $\Lambda_{\mathrm{m}}=284 \mathrm{ohm}^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$ (in acetonitrile).

3.2.22. $\left[\left\{P d\left[4-\mathrm{MeC}_{6} \mathrm{H}_{3} \mathrm{C}(\mathrm{Me})=\mathrm{NN}(\mathrm{H}) \mathrm{C}(=\mathrm{O})-\right.\right.\right.$ $\left.\left.\mathrm{NH}_{2}\right](\mathrm{Cl})_{2}\left(\mu-\mathrm{Ph}_{2} \mathrm{P}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{PPh}_{2}\right)\right] \boldsymbol{8} \boldsymbol{a}$

$\mathrm{Ph}_{2} \mathrm{P}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{PPh}_{2}(32 \mathrm{mg}, 0.08 \mathrm{mmol})$ was added to a suspension of $\mathbf{1 a}(50 \mathrm{mg}, 0.15 \mathrm{mmol})$ in acetone (15 cm^{3}). The mixture was stirred for 4 h , the resulting white solid filtered off and dried in air. Yield 90%. Anal. Found: $\mathrm{C}, 52.8 ; \mathrm{H}, 4.8 ; \mathrm{N}, \quad 7.8$. $\mathrm{C}_{48} \mathrm{H}_{52} \mathrm{~N}_{6} \mathrm{O}_{2} \mathrm{Cl}_{2} \mathrm{Pd}_{2} \mathrm{P}_{2}$. Calc.: C, 52.9; H, 4.8; N, 7.7\%. IR: $v(\mathrm{C}=\mathrm{O}) \quad 1720 \mathrm{~s}, v(\mathrm{C}=\mathrm{N}) 1620 \mathrm{~m}, v(\mathrm{Pd}-\mathrm{Cl}) 285 \mathrm{w}$ cm^{-1}. Compounds 9a, 8c and 9 c were obtained following a similar procedure.

3.2.23. $\left[\left\{P d\left[4-\mathrm{MeC}_{6} \mathrm{H}_{3} \mathrm{C}(\mathrm{Me})=\mathrm{NN}(\mathrm{H}) \mathrm{C}(=\mathrm{O}) \mathrm{NH}_{2}\right]-\right.\right.$ $\left.(\mathrm{Cl})\}_{2}\left(\mu-\mathrm{Ph}_{2} \mathrm{P}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{PPh} h_{2}\right)\right] \boldsymbol{9} \boldsymbol{a}$

Yield 79%. Anal. Found: C, 52.2; H, 4.3; N, 7.7. $\mathrm{C}_{46} \mathrm{H}_{48} \mathrm{~N}_{6} \mathrm{O}_{2} \mathrm{Cl}_{2} \mathrm{Pd}_{2} \mathrm{P}_{2}$. Calc.: C, $52.0 ; \mathrm{H}, 4.5 ; \mathrm{N}, 7.9 \%$. IR: $v(\mathrm{C}=\mathrm{O}) \quad 1720 \mathrm{~s}, v(\mathrm{C}=\mathrm{N}) 1620 \mathrm{~m}, v(\mathrm{Pd}-\mathrm{Cl}) 265 \mathrm{w}$ cm^{-1}.
3.2.23.1. $\left[\left\{{ }^{\mathrm{P}} \mathrm{d}\left[4-\mathrm{MeC}_{6} \mathrm{H}_{3} \mathrm{C}(\mathrm{Me})=\mathrm{NN}(\mathrm{H}) \mathrm{C}(=\mathrm{O}) \mathrm{NH}_{2}\right]-\right.\right.$ $\left.(\mathrm{Cl})_{2}\left(\mu-\mathrm{Ph}_{2} \mathrm{P}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{PPh}_{2}\right)\right] \quad 8 \mathrm{c}$. Yield 79%. Anal. Found: C, 53.0; $\mathrm{H}, 5.0 ; \mathrm{N}, 7.8 . \mathrm{C}_{48} \mathrm{H}_{52} \mathrm{~N}_{6} \mathrm{O}_{2} \mathrm{Cl}_{2} \mathrm{Pd}_{2} \mathrm{P}_{2}$. Calc.: C, $52.9 ; \mathrm{H}, 4.8 ; \mathrm{N}, 7.7 \%$. IR: $v(\mathrm{C}=\mathrm{O}) 1712 \mathrm{~s}$, $v(\mathrm{C}=\mathrm{N}) 1627 \mathrm{~s}, v(\mathrm{Pd}-\mathrm{Cl}) 280 \mathrm{w} \mathrm{cm}^{-1}$.
3.2.24. $\left[\left\{\mathrm{Pd}_{[}\left[\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{C}(\mathrm{Et})=\mathrm{NN}(\mathrm{H}) \mathrm{C}(=\mathrm{O}) \mathrm{NH}_{2}\right]-\right.\right.$ $\left.(\mathrm{Cl})\}_{2}\left(\mu-\mathrm{Ph}{ }_{2} \mathrm{P}\left(\mathrm{CH}_{2}\right)_{3} P \mathrm{Ph} h_{2}\right)\right] 9 \mathrm{c}$

Yield 85%. Anal. Found: C, 52.4; H, 4.9; N, 7.7. $\mathrm{C}_{47} \mathrm{H}_{50} \mathrm{~N}_{6} \mathrm{O}_{2} \mathrm{Cl}_{2} \mathrm{Pd}_{2} \mathrm{P}_{2}$. Calc.: C, $52.0 ; \mathrm{H}, 4.7 ; \mathrm{N}, 7.8 \%$. IR: $v(\mathrm{C}=\mathrm{O}) \quad 1710 \mathrm{~s}, v(\mathrm{C}=\mathrm{N}) \quad 1629 \mathrm{~s}, v(\mathrm{Pd}-\mathrm{Cl}) 280 \mathrm{w}$ cm^{-1}.

An alternative route for the synthesis of $2 \mathbf{2 a}$ was performed as follows:To a suspension of 8a (50 mg , 0.05 mmol) in acetone ($15 \mathrm{~cm}^{3}$) $\mathrm{AgClO}_{4}(10 \mathrm{mg}, 0.05$ mmol) was added. The resulting suspension was stirred for 4 h and filtered trough Celite to remove the AgCl . The solvent was removed and the product recrystallized from dichloromethane/hexane to give 2a. 4a, 2c and 3c could be synthesized following a similar procedure by reacting $9 \mathrm{a}, 8 \mathrm{8c}$ and 9 c with Ag ClO_{4}, respectively.

3.3. Single-crystal diffraction analysis

A yellow prismatic crystal of $\left[\left\{\mathrm{Pd}\left[\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{C}(\mathrm{Et})=\right.\right.\right.$ $\left.\left.\mathrm{NN}(\mathrm{H}) \mathrm{C}(=\mathrm{O}) \mathrm{NH}_{2}\right]_{2}\left(\mu-\mathrm{Ph}_{2} \mathrm{P}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{PPh}_{2}\right)\right]\left[\mathrm{ClO}_{4}\right]_{2} \quad$ 3c was mounted on a glass fiber and used for data collection. Cell constants and an orientation matrix for data collection were obtained by least-squares refinement of the diffraction data from 25 reflections in the range $6.23^{\circ}<\theta<13.16^{\circ}$ in a ENRAF-NONIUS CAD4 automatic diffractometer [20]. Data were collected at 293 K using $\mathrm{Mo}-\mathrm{K}_{\alpha}$ radiation $(\lambda=0.70930$ \AA) and the $\omega / 2 \theta$ scan technique. Data were corrected for Lorentz and polarization effects. An empirical absorption correction was made [21]. A summary of the crystal data, experimental details and refinement results are listed in Table 2.
The structure was solved by direct methods [22] which revealed the position of all non-H atoms, and refined on F by full-matrix least-squares procedure using anisotropic displacement parameters for all nonH atoms except the phenyl groups and perchlorate anions. The H atoms were calculated at idealized positions and added to the structure factor calculations as fixed contributions ($B_{\text {iso }}=5.0 \AA$) but their positional parameters were not refined. After all shift/ e.s.d. ratios were <0.03, the refinement convereged to the agreement factors listed in Table 2. Atomic scattering factors from International Tables for X-ray crystallography [23]. Molecular graphics from ORTEP [24].

Acknowledgements

We wish to thank the Xunta de Galicia (Spain) (Proyecto XUGA20913B96) for financial support and Johnson Matthey for the generous loan of palladium salt.

References

[1] I. Omae, in: Organometallic Intramolecular-coordination Compounds. Elsevier Science, Amsterdam-New York, 1986.
[2] V.V. Dunina, O.A. Zalevskaya, V.M. Potapov, Russ. Chem. Rev. 571 (1984) 250.
[3] G.R. Newkome, W.E. Puckett, W.K. Gupta, G.E Kiefer, Chem. Rev. 86 (1986) 451.
[4] A.D. Ryabov, Chem. Rev. 90 (1990) 403.
[5] M. Pfeffer, Recl. Trav. Chim. Pyas-Bas 109 (1990) 567.
[6] M. Pfeffer, J.P. Sutter, M.A. Rottevel, A. de Cian, J. Fischer, Tetrahedron 48 (1992) 2440.
[7] A.D. Ryabov, R. van Eldik, G. Le Borgne, M. Pfeffer, Organometallics 12 (1993) 1386.
[8] P. Espinet, M.A. Esteruelas, L.A. Oro, J.L. Serrano, E. Sola, Coord. Chem. Rev. 17 (1992) 215.
[9] A. Bose, C.H. Saha, J. Mol. Catal. 49 (1989) 271.
[10] J.M. Vila, M. Gayoso, M.T. Pereira, M. López Torres, J.J. Fernández, A. Fernández, J.M. Ortigueira, J. Organomet. Chem. 532 (1997) 171.
[11] M. Nonoyama, Inorg. Chim. Acta 145 (1988) 53.
[12] P. Ghosh, A. Pramanik, N. Bag, G.K. Lahiri, A. Chakravorty, J. Organomet. Chem. 454 (1993) 237.
[13] S. Tollari, G. Palmisano, F. Demartin, M. Grassi, S. Magnaghi, S. Cenini, J. Organomet. Chem. 488 (1995) 79.
[14] (a) M. Nonoyama, Inorg. Nucl. Chem. Lett., 14 (1978) 337. (b) M. Sugimoto, M. Nonoyama, Inorg. Nucl. Chem. Lett., 15 (1979) 405.
[15] J.M. Vila, M. Gayoso, M.T. Pereira, M. López Torres, J.J.

Fernández, A. Fernández, J.M. Ortigueira, J. Organomet. Chem. 506 (1996) 165.
[16] L. Pauling, The Nature of the Chemical Bond, 3rd ed., Cornell University Press, New York, 1960.
[17] D.D. Perrin, W.L.F. Armarego, D.P. Perrin, Purification of Laboratory Chemicals, 2nd ed., Pergamon, Oxford, 1983.
[18] J.M. Vila, M. Gayoso, M.T. Pereira, M. López Torres, J.J. Fernández, A. Fernández, J.M. Ortigueira, J. Organomet. Chem. 547 (1997) 297.
[19] Vogle's Textbook of Practical Organic Chemistry, 5th ed., Longman Scientific and Technical, 1989, p. 1258.
[20] B.A. Frenz et al., Structure Determination Package, SDP/VAX V. 2.2 College Station, Texas, US, Enraf-Nonius, Delft, The Netherlands, 1985.
[21] N. Walker, D. Stuart, Acta Crystallogr. A39 (1983) 158.
[22] G.M. Sheldrick. SHELXS86. A Program for the Solution of Crystal Structures from X-ray Diffraction Data, University of Göttigen, Germany, 1986.
[23] International Tables for X-ray Crystallography, vol. IV, Kynoch Press, Birmingham, 1974.
[24] C.K. Johnson, ORTEP II. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, US, 1976.

[^0]: * Corresponding author.

